
/**************************************************************** 

 * Programmer: Stephen D Dunn, Shawn Mull, Tarang Hirani 

 * Program: Universal Vehicle Chassis Controller 

 * Date: 9/16/2015 

 * Time: 22:45 

 * Description: This program is intended to be a command and control 

 * module for vehicle automation. It will have multiple modules with 

 * classes and functions that will be called from a C# Console Application 

 * via COM port and return values to the command interface 

 * to indicate Val. InteriorLightingModule, ExteriorLightingModule, 

 * WindowControlModule, ActiveSuspensionModule, ActiveAerodynamicsModule 

 * and EnvironmentalControlModule. 

 * Revision Date: 11/10/2015 

 ***************************************************************/ 

/*Libraries*/ 

#include <Stepper.h> 

#include <Servo.h> 

#include "Arduino.h" 

#include <SPI.h> 

#include <SoftwareSerial.h> 

 

//Active Suspension Module 

//Front Left Compression and Rebound Motor Pins 

//  const int FLCompMotorPin1 

//  const int FLCompMotorPin2 

//  const int FLRebMotorPin1 

//  const int FLRebMotorPin2 

//  const int AnalogHeight1 

 

//Front Right Compression and Rebound Motor Pins 

//  const int FRCompMotorPin1 

//  const int FRCompMotorPin2 

//  const int FRRebMotorPin1 

//  const int FRRebMotorPin2 

//  const int AnalogHeight2 

 

//Rear Left Compression and Rebound Motor Pins 

//  const int RLCompMotorPin1 

//  const int RLCompMotorPin2 

//  const int RLRebMotorPin1 

//  const int RLRebMotorPin2 

//  const int AnalogHeight3 

 

//Rear Right Compression and Rebound Motor Pins 



//  const int RRCompMotorPin1 

//  const int RRCompMotorPin2 

//  const int RRRebMotorPin1 

//  const int RRRebMotorPin2 

//  const int AnalogHeight4 

 

//Windshield Motor Control Variables 

const int WiperSwitchPos1 = 11; 

const int WiperSwitchPos2 = 12; 

const int WiperSwitchPos3 = 13; 

const int WiperMotorPin1 = 14; 

const int WiperMotorPin2 = 15; 

const int WiperMotorSpeed = 16; 

 

//Running Light Constant Variables 

const int RunningLight = 17; 

const int RunningLight_IO = 18; 

 

//LOW Beam Lighting Constant Variables 

const int LowBeams = 19; 

const int LowBeam_IO = 20; 

 

//High Beam Lighting Constant Variables 

const int HighBeams = 21; 

const int HighBeam_IO = 22; 

 

//Left Blinker Lighting Constant Variables 

const int LeftBlinker = 23; 

const int LBlinker_IO = 24; 

 

//Right Blinker Lighting Constant Variables 

const int RightBlinker = 25; 

const int RBlinker_IO = 26; 

 

//Emergency Lighting Constant Variables 

const int EmergencyLights = 27; 

 

//Brake Lights Constant Variables 

const int BrakeLights = 28; 

const int BrakeLights_IO = 29; 

 

//Interior Lighting Constant Variables 

const int dsideDoor = 30; 

const int psideDoor = 31; 



const int rHatchDoor = 32; 

const int InteriorLighting_IO = 33; 

const int DimmerSwitch = 34; 

 

//Drivers Side Window Inputs Variables 

const int iFLWindowUp = 35; 

const int iFLWindowDn = 36; 

 

//Passengers Side Front Window Inputs Variables 

const int iFRWindowUp = 37; 

const int iFRWindowDn = 38; 

 

//Rear Passengers Side Left Window Inputs Variables 

const int iRLWindowUp = 39; 

const int iRLWindowDn = 40; 

 

//Rear Passengers Side Right Window Inputs Variables 

const int iRRWindowUp = 41; 

const int iRRWindowDn = 42; 

 

//Sunroof Inputs Variables 

const int iSunroofOpen = 43; 

const int iSunroofClosed = 44; 

 

//Front Left Window Outputs Variables 

const int oFLWindowMotorPin1 = 45; 

const int oFLWindowMotorPin2 = 46; 

 

//Front Right Window Outputs Variables 

const int oFRWindowMotorPin1 = 47; 

const int oFRWindowMotorPin2 = 48; 

 

//Rear Left Window Outputs Variables 

const int oRLWindowMotorPin1 = 49; 

const int oRLWindowMotorPin2 = 50; 

 

//Rear Right Window Outputs Variables 

const int oRRWindowMotorPin1 = 51; 

const int oRRWindowMotorPin2 = 52; 

 

//SunRoof Outputs Variables 

const int oSunroofMotorPin1 = 53; 

const int oSunroofMotorPin2 = 54; 

 



//Set Pin Assignents 

const int gear1 = 7; 

const int gear2 = 6; 

const int gear3 = 5; 

const int gear4 = 4; 

const int gear5 = 3; 

const int gearR = 8; 

 

//Define Variables 

int leftPin = A0; 

int rightPin = A0; 

int reversePin = A0; 

int neutralPin = A0; 

int left_tap = 0; 

int right_tap = 0; 

int reverse_tap = 0; 

int neutral_tap = 0; 

int gear = 0; 

 

//Wiper Control Module Variables 

int WiperMotorPin1Val; 

int WiperMotorPin2Val; 

int WiperSwitchPos1Val; 

int WiperSwitchPos2Val; 

int WiperSwitchPos3Val; 

int WiperMotorSpeedVal; 

 

// Active Suspension Variables 

//  int ModeSelectPassiveVal; 

//  int ModeSelectActiveVal; 

//  int ModeSelectOffVal; 

// 

// Analog Height Sensor Values 

//  int AnalogHeight1Val; 

//  int AnalogHeight2Val; 

//  int AnalogHeight3Val; 

//  int AnalogHeight4Val; 

// 

// Front Left Compression and Rebound Motor Values 

//  int FLCompMotorPin1Val; 

//  int FLCompMotorPin2Val; 

//  int FLRebMotorPin1Val; 

//  int FLRebMotorPin2Val; 

// 



// Front Right Compression and Rebound Motor Values 

//  int FRCompMotorPin1; 

//  int FRCompMotorPin2; 

//  int FRRebMotorPin1; 

//  int FRRebMotorPin2; 

// 

// Rear Left Compression and Rebound Motor Values 

//  int RLCompMotorPin1; 

//  int RLCompMotorPin2; 

//  int RLRebMotorPin1; 

//  int RLRebMotorPin2; 

// 

// Rear Right Compression and Rebound Motor Values 

//  int RRCompMotorPin1; 

//  int RRCompMotorPin2; 

//  int RRRebMotorPin1; 

//  int RRRebMotorPin2; 

//  int AnalogHeight4; 

 

//Active Aerodynamics 

Servo wing1; 

int wing; 

int throttle; 

int brake; 

int steer; 

int thottleThresh = 90; 

 

//Roaming Variables 

int HeadLightVal = 0; 

int LowBeamVal = 0; 

int EmergencyLightVal = 0; 

int BrakeLightVal = 0; 

int RunningLightVal = 0; 

 

//Roaming variables 

int DoorVal = 0; 

 

//Declare Variable Vals 

int FLWindowUpVal = 0; 

int FLWindowDnVal = 0; 

int FRWindowUpVal = 0; 

int FRWindowDnVal = 0; 

int RLWindowUpVal = 0; 

int RLWindowDnVal = 0; 



int RRWindowUpVal = 0; 

int RRWindowDnVal = 0; 

int SunroofOpenVal = 0; 

int SunroofClosedVal = 0; 

 

void setup(){ 

 

  //Define Window Control Module 

  pinMode(iFLWindowUp, INPUT); 

  pinMode(iFLWindowDn, INPUT); 

  pinMode(iFRWindowUp, INPUT); 

  pinMode(iFRWindowDn, INPUT); 

  pinMode(iRLWindowUp, INPUT); 

  pinMode(iRLWindowDn, INPUT); 

  pinMode(iRRWindowUp, INPUT); 

  pinMode(iRRWindowDn, INPUT); 

 

  //Define Interior Lighting Module 

  pinMode(InteriorLighting_IO, OUTPUT); 

  pinMode(dsideDoor, INPUT); 

  pinMode(psideDoor, INPUT); 

  pinMode(rHatchDoor, INPUT); 

 

  // Define Sequential Shifter 

  pinMode(gear1, OUTPUT); 

  pinMode(gear2, OUTPUT); 

  pinMode(gear3, OUTPUT); 

  pinMode(gear4, OUTPUT); 

  pinMode(gear5, OUTPUT); 

  pinMode(gearR, OUTPUT); 

 

  //Initialize Gears 

  digitalWrite(gear1, LOW); 

  digitalWrite(gear2, LOW); 

  digitalWrite(gear3, LOW); 

  digitalWrite(gear4, LOW); 

  digitalWrite(gear5, LOW); 

  digitalWrite(gearR, LOW); 

 

  //Define Exterior Lighting Module 

  pinMode(LowBeams, INPUT); 

  pinMode(LowBeam_IO, OUTPUT); 

  pinMode(HighBeams, INPUT); 

  pinMode(HighBeam_IO, OUTPUT); 



  pinMode(RunningLight, INPUT); 

  pinMode(RunningLight_IO, OUTPUT); 

  pinMode(LeftBlinker, INPUT); 

  pinMode(LBlinker_IO, OUTPUT); 

  pinMode(RightBlinker, INPUT); 

  pinMode(RBlinker_IO, OUTPUT); 

  pinMode(EmergencyLights, INPUT); 

  pinMode(BrakeLights, INPUT); 

  pinMode(BrakeLights_IO, OUTPUT); 

 

  //Define Window Motor Control Outputs 

  pinMode(oFLWindowMotorPin1, OUTPUT); 

  pinMode(oFLWindowMotorPin2, OUTPUT); 

 

  //Front Right Window Outputs 

  pinMode(oFRWindowMotorPin1, OUTPUT); 

  pinMode(oFRWindowMotorPin2, OUTPUT); 

 

  //Rear Left Window Outputs 

  pinMode(oRLWindowMotorPin1, OUTPUT); 

  pinMode(oRLWindowMotorPin2, OUTPUT); 

 

  //Rear Right Window Outputs 

  pinMode(oRRWindowMotorPin1, OUTPUT); 

  pinMode(oRRWindowMotorPin2, OUTPUT); 

 

  //SunRoof Outputs 

  pinMode(oSunroofMotorPin1, OUTPUT); 

  pinMode(oSunroofMotorPin2, OUTPUT); 

 

  wing1.attach(9); 

  //Setup Communication 

  Serial.begin(9600); 

} 

 

void loop() 

{ 

  SequentialShiftControl(); 

  // ActiveSuspensionModule(); 

  EnvironmentalControlModule(); 

  ExteriorLightingModule(); 

  InteriorLightingModule(); 

  WindowControlModule(); 

  // IgnitionControlModule(); 



  WiperControlModule(); 

 

  // read the input on analog pin 0 (Throttle Position): 

  throttle = analogRead(A4); 

  // read the input on analog pin 1 (Brake pressure); 

  brake = analogRead(A5); 

  // read the input on analog pin 2 (Steering Possition); 

  steer = analogRead(A6); 

 

  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V): 

  // Throttle 

  float throttlePos = ((4.4 - (throttle * (5.0 / 1023.0))) / (4.4 - 1.3)) * 100; 

  // Brake 

  float brakePres = (brake * (5.0 / 1023.0)); 

  // Steering 

  float SteeringPos = (steer * (5.0 / 1023.0)); 

 

  // controling rear wing 

  // change wing if throttle goes high and steering straight 

  if ((throttlePos > thottleThresh) && (2 < SteeringPos < 3)) { 

    wing1.write(0); 

  } 

  //air brake if steering straight and brakes go high 

  else if ((2 < SteeringPos < 3) && (brakePres > 4.9)) { 

    wing1.write(180); 

  } 

  //lift wing if turning 

  else if ((brakePres < 4.9) && (SteeringPos > 3)) { 

    wing1.write(80); 

  } 

  else { 

    wing1.write(40); 

  } 

} 

void ActiveSuspensionModule(){ 

   

} 

 

void EnvironmentalControlModule(){ 

 

} 

void ExteriorLightingModule() { 

  HeadLightVal = digitalRead(HighBeams); 

  if (HeadLightVal == HIGH) { 



    digitalWrite(HighBeam_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(HighBeam_IO, HIGH); 

  } 

  LowBeamVal = digitalRead(LowBeams); 

  if (LowBeamVal == HIGH) { 

    digitalWrite(LowBeam_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(LowBeam_IO, HIGH); 

  } 

  EmergencyLightVal = digitalRead(EmergencyLights); 

  if (EmergencyLightVal == LOW) { 

    digitalWrite(RBlinker_IO, LOW); 

    digitalWrite(LBlinker_IO, LOW); 

    delay(1000); 

    digitalWrite(RBlinker_IO, HIGH); 

    digitalWrite(LBlinker_IO, HIGH); 

    delay(1000); 

  } 

  else 

  { 

    digitalWrite(RBlinker_IO, HIGH); 

    digitalWrite(LBlinker_IO, HIGH); 

  } 

  RunningLightVal = digitalRead(RunningLight); 

  if (RunningLightVal == HIGH) { 

    digitalWrite(RunningLight_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(RunningLight_IO, HIGH); 

  } 

} 

 

void IgnitionControlModule(){ 

   

} 

 

void InteriorLightingModule() { 

 



  DoorVal = digitalRead(dsideDoor); 

  if (DoorVal == HIGH) { 

    digitalWrite(InteriorLighting_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(InteriorLighting_IO, HIGH); 

  } 

  DoorVal = digitalRead(psideDoor); 

  if (DoorVal == HIGH) { 

    digitalWrite(InteriorLighting_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(InteriorLighting_IO, HIGH); 

  } 

  DoorVal = digitalRead(rHatchDoor); 

  if (DoorVal == HIGH) { 

    digitalWrite(InteriorLighting_IO, LOW); 

  } 

  else 

  { 

    digitalWrite(InteriorLighting_IO, HIGH); 

  } 

} 

 

int SequentialShiftControl() { 

  left_tap = analogRead(leftPin); 

  right_tap = analogRead(rightPin); 

  reverse_tap = analogRead(reversePin); 

  neutral_tap = analogRead(neutralPin); 

 

  if (left_tap > 500) { 

    switch (gear) { 

      case -1: 

        //do nothing 

        break; 

 

      case 0: 

        //do nothing 

        break; 

 

      case 1: 

        //do nothing 



        break; 

 

      case 2: 

        //downshift to gear 1 

        digitalWrite(gear2, LOW); 

        delay(100); 

        digitalWrite(gear1, HIGH); 

        gear = 1; 

        break; 

 

      case 3: 

        //downshift to gear 2 

        digitalWrite(gear3, LOW); 

        delay(100); 

        digitalWrite(gear2, HIGH); 

        gear = 2; 

        break; 

 

      case 4: 

        //downshift to gear 3 

        digitalWrite(gear4, LOW); 

        delay(100); 

        digitalWrite(gear3, HIGH); 

        gear = 3; 

        break; 

 

      case 5: 

        //downshift to gear 4 

        digitalWrite(gear5, LOW); 

        delay(100); 

        digitalWrite(gear4, HIGH); 

        gear = 4; 

        break; 

    } 

  } 

 

  if (right_tap > 500) { 

    switch (gear) { 

      case -1: 

        //upshift to gear 0 

        digitalWrite(gearR, LOW); 

        delay(100); 

        gear = 0; 

        break; 



 

      case 0: 

        //upshift to gear 1 

        digitalWrite(gear1, HIGH); 

        gear = 1; 

        break; 

 

      case 1: 

        //upshift to gear 2 

        digitalWrite(gear1, LOW); 

        delay(100); 

        digitalWrite(gear2, HIGH); 

        gear = 2; 

        break; 

 

      case 2: 

        //upshift to gear 3 

        digitalWrite(gear2, LOW); 

        delay(100); 

        digitalWrite(gear3, HIGH); 

        gear = 3; 

        break; 

 

      case 3: 

        //upshift to gear 4 

        digitalWrite(gear3, LOW); 

        delay(100); 

        digitalWrite(gear4, HIGH); 

        gear = 4; 

        break; 

 

      case 4: 

        //upshift to gear 5 

        digitalWrite(gear4, LOW); 

        delay(100); 

        digitalWrite(gear5, HIGH); 

        gear = 1; 

        break; 

 

      case 5: 

        //do nothing 

        break; 

    } 

  } 



 

  if (reverse_tap > 500) { 

    switch (gear) { 

      case -1: 

        //do nothing 

        break; 

 

      case 0: 

        //shift into reverse 

        digitalWrite(gearR, HIGH); 

        gear = -1; 

        break; 

 

      case 1: 

        //do nothing 

        break; 

      case 2: 

        //do nothing 

        break; 

      case 3: 

        //do nothing 

        break; 

      case 4: 

        //do nothing 

        break; 

      case 5: 

        //do nothing 

        break; 

    } 

  } 

 

  if (neutral_tap > 500) { 

    digitalWrite(gear1, LOW); 

    digitalWrite(gear2, LOW); 

    digitalWrite(gear3, LOW); 

    digitalWrite(gear4, LOW); 

    digitalWrite(gear5, LOW); 

    digitalWrite(gearR, LOW); 

    gear = 0; 

  } 

} 

 

int StartupCalibrationModule(){ 

   



} 

 

void WindowControlModule() { 

 

  FLWindowUpVal == digitalRead(iFLWindowUp); 

  if (FLWindowUpVal == HIGH) { 

    digitalWrite(oFLWindowMotorPin1, LOW); 

    digitalWrite(oFLWindowMotorPin2, HIGH); 

  } 

  else 

  { 

    digitalWrite(oFLWindowMotorPin1, HIGH); 

    digitalWrite(oFLWindowMotorPin2, HIGH); 

  } 

  FLWindowDnVal == digitalRead(iFLWindowDn); 

  if (FLWindowDnVal == HIGH) { 

    digitalWrite(oFLWindowMotorPin1, HIGH); 

    digitalWrite(oFLWindowMotorPin2, LOW); 

  } 

  else 

  { 

    digitalWrite(oFLWindowMotorPin1, HIGH); 

    digitalWrite(oFLWindowMotorPin2, HIGH); 

  } 

  FRWindowUpVal = digitalRead(iFRWindowUp); 

  if (FRWindowUpVal == HIGH) { 

    digitalWrite(oFRWindowMotorPin1, LOW); 

    digitalWrite(oFRWindowMotorPin2, HIGH); 

  } 

  else 

  { 

    digitalWrite(oFRWindowMotorPin1, HIGH); 

    digitalWrite(oFRWindowMotorPin2, HIGH); 

  } 

  FRWindowDnVal = digitalRead(iFRWindowDn); 

  if (FRWindowDnVal == HIGH) { 

    digitalWrite(oFRWindowMotorPin1, LOW); 

    digitalWrite(oFRWindowMotorPin2, HIGH); 

  } 

  else 

  { 

    digitalWrite(oFRWindowMotorPin1, HIGH); 

    digitalWrite(oFRWindowMotorPin2, HIGH); 

  } 



  RLWindowUpVal == digitalRead(iRLWindowUp); 

  if (RLWindowUpVal == HIGH) { 

    digitalWrite(oRLWindowMotorPin1, LOW); 

    digitalWrite(oRLWindowMotorPin2, HIGH); 

  } 

  else 

  { 

    digitalWrite(oRLWindowMotorPin1, HIGH); 

    digitalWrite(oRLWindowMotorPin2, HIGH); 

  } 

  RLWindowDnVal == digitalRead(iRLWindowDn); 

  if (RLWindowDnVal == HIGH) { 

    digitalWrite(oRLWindowMotorPin1, HIGH); 

    digitalWrite(oRLWindowMotorPin2, LOW); 

  } 

  else 

  { 

    digitalWrite(oRLWindowMotorPin1, HIGH); 

    digitalWrite(oRLWindowMotorPin2, HIGH); 

  } 

  RRWindowUpVal == digitalRead(iRRWindowUp); 

  if (RRWindowUpVal == HIGH) { 

    digitalWrite(oRRWindowMotorPin1, LOW); 

    digitalWrite(oRRWindowMotorPin2, HIGH); 

  } 

  else 

  { 

    digitalWrite(oRRWindowMotorPin1, HIGH); 

    digitalWrite(oRRWindowMotorPin2, HIGH); 

  } 

  RRWindowDnVal == digitalRead(iRRWindowDn); 

  if (RRWindowDnVal == HIGH) { 

    digitalWrite(oRRWindowMotorPin1, HIGH); 

    digitalWrite(oRRWindowMotorPin2, LOW); 

  } 

  else 

  { 

    digitalWrite(oRRWindowMotorPin1, HIGH); 

    digitalWrite(oRRWindowMotorPin2, HIGH); 

  } 

  SunroofOpenVal, digitalRead(iSunroofOpen); 

  if (SunroofOpenVal == HIGH) { 

    digitalWrite(oSunroofMotorPin1, LOW); 

    digitalWrite(oSunroofMotorPin2, HIGH); 



  } 

  else 

  { 

    digitalWrite(oSunroofMotorPin1, HIGH); 

    digitalWrite(oSunroofMotorPin2, HIGH); 

  } 

  SunroofClosedVal == digitalRead(iSunroofClosed); 

  if (SunroofClosedVal == HIGH) { 

    digitalWrite(oSunroofMotorPin1, HIGH); 

    digitalWrite(oSunroofMotorPin2, LOW); 

  } 

  else 

  { 

    digitalWrite(oSunroofMotorPin1, HIGH); 

    digitalWrite(oSunroofMotorPin2, HIGH); 

  } 

} 

 

void WiperControlModule() { 

 

  WiperSwitchPos1Val == digitalRead(WiperSwitchPos1); 

  while (WiperSwitchPos1Val, HIGH) { 

    digitalWrite(WiperMotorPin1, HIGH); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 85); 

  } 

  WiperSwitchPos1Val == digitalRead(WiperSwitchPos1); 

  while (WiperSwitchPos1Val, LOW) { 

    digitalWrite(WiperMotorPin1, LOW); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 0); 

  } 

  WiperSwitchPos2Val == digitalRead(WiperSwitchPos2); 

  while (WiperSwitchPos2Val, HIGH) { 

    digitalWrite(WiperMotorPin1, HIGH); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 170); 

  } 

  WiperSwitchPos2Val == digitalRead(WiperSwitchPos2); 

  while (WiperSwitchPos2Val, LOW) { 

    digitalWrite(WiperMotorPin1, LOW); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 0); 

  } 



  WiperSwitchPos3Val == digitalRead(WiperSwitchPos3); 

  while (WiperSwitchPos3Val, HIGH) { 

    digitalWrite(WiperMotorPin1, HIGH); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 255); 

  } 

  WiperSwitchPos3Val == digitalRead(WiperSwitchPos3); 

  while (WiperSwitchPos3Val, LOW) { 

    digitalWrite(WiperMotorPin1, LOW); 

    digitalWrite(WiperMotorPin2, LOW); 

    digitalWrite(WiperMotorSpeedVal, 0); 

  } 

} 


