/**

* Programmer: Stephen D Dunn, Shawn Mull, Tarang Hirani

* Program: Universal Vehicle Chassis Controller

* Date: 9/16/2015

* Time: 22:45

* Description: This program is intended to be a command and control

* module for vehicle automation. It will have multiple modules with

* classes and functions that will be called from a C# Console Application

* via COM port and return values to the command interface

* to indicate Val. InteriorLightingModule, ExteriorLightingModule,

* WindowControlModule, ActiveSuspensionModule, ActiveAerodynamicsModule
* and EnvironmentalControlModule.

* Revision Date: 11/10/2015
***/
/*Libraries*/

#include <Stepper.h>

#include <Servo.h>

#include "Arduino.h"

#include <SPI.h>

#include <SoftwareSerial.h>

//Active Suspension Module

//Front Left Compression and Rebound Motor Pins
// const int FLCompMotorPinl

// const int FLCompMotorPin2

// const int FLRebMotorPinl

// const int FLRebMotorPin2

// const int AnalogHeightl

//Front Right Compression and Rebound Motor Pins
// const int FRCompMotorPinl

// const int FRCompMotorPin2

// const int FRRebMotorPin1

// const int FRRebMotorPin2

// constint AnalogHeight2

//Rear Left Compression and Rebound Motor Pins
// const int RLCompMotorPinl

// const int RLCompMotorPin2

// const int RLRebMotorPin1

// const int RLRebMotorPin2

// const int AnalogHeight3

//Rear Right Compression and Rebound Motor Pins

// const int RRCompMotorPinl
// const int RRCompMotorPin2
// const int RRRebMotorPinl
// const int RRRebMotorPin2
// const int AnalogHeight4

//Windshield Motor Control Variables
const int WiperSwitchPos1 = 11;
const int WiperSwitchPos2 = 12;
const int WiperSwitchPos3 = 13;
const int WiperMotorPinl = 14;

const int WiperMotorPin2 = 15;

const int WiperMotorSpeed = 16;

//Running Light Constant Variables
const int RunninglLight = 17;
const int RunninglLight_IO = 18;

//LOW Beam Lighting Constant Variables
const int LowBeams = 19;
const int LowBeam_IO = 20;

//High Beam Lighting Constant Variables
const int HighBeams = 21;
const int HighBeam_IO = 22;

//Left Blinker Lighting Constant Variables
const int LeftBlinker = 23;
const int LBlinker_10 = 24,

//Right Blinker Lighting Constant Variables
const int RightBlinker = 25;
const int RBlinker_IO = 26;

//Emergency Lighting Constant Variables
const int Emergencylights = 27;

//Brake Lights Constant Variables
const int BrakeLights = 28;
const int BrakelLights_10 = 29;

//Interior Lighting Constant Variables
const int dsideDoor = 30;
const int psideDoor = 31;

const int rHatchDoor = 32;
const int InteriorLighting_I10 = 33;
const int DimmerSwitch = 34;

//Drivers Side Window Inputs Variables
const int iIFLWindowUp = 35;
const int iFLWindowDn = 36;

//Passengers Side Front Window Inputs Variables
const int iFRWindowUp = 37;
const int iFRWindowDn = 38;

//Rear Passengers Side Left Window Inputs Variables
const int iRLWindowUp = 39;
const int iRLWindowDn = 40;

//Rear Passengers Side Right Window Inputs Variables
const int iRRWindowUp = 41;
const int iRRWindowDn = 42;

//Sunroof Inputs Variables
const int iSunroofOpen = 43;
const int iSunroofClosed = 44;

//Front Left Window Outputs Variables
const int oFLWindowMotorPinl = 45;
const int oFLWindowMotorPin2 = 46;

//Front Right Window Outputs Variables
const int oFRWindowMotorPinl = 47,
const int oFRWindowMotorPin2 = 48;

//Rear Left Window Outputs Variables
const int oRLWindowMotorPinl = 49;
const int oRLWindowMotorPin2 = 50;

//Rear Right Window Outputs Variables
const int oRRWindowMotorPinl = 51;
const int oRRWindowMotorPin2 = 52;

//SunRoof Outputs Variables
const int oSunroofMotorPin1 = 53;
const int oSunroofMotorPin2 = 54;

//Set Pin Assignents
const int gearl =7;
const int gear2 = 6;
const int gear3 =5;
const int geard = 4;
const int gear5 = 3;
const int gearR =8;

//Define Variables
int leftPin = AO;

int rightPin = AQ;
int reversePin = AQ;
int neutralPin = AO;
int left_tap =0;

int right_tap =0;
int reverse_tap =0;
int neutral_tap =0;
int gear =0;

//Wiper Control Module Variables
int WiperMotorPin1Val;

int WiperMotorPin2Val;

int WiperSwitchPos1Val;

int WiperSwitchPos2Val;

int WiperSwitchPos3Val;

int WiperMotorSpeedVal;

// Active Suspension Variables
// int ModeSelectPassiveVal;
// int ModeSelectActiveVal;
// int ModeSelectOffVal;

//

// Analog Height Sensor Values
// int AnalogHeight1Val;

// int AnalogHeight2Val;

// int AnalogHeight3Val;

// int AnalogHeight4Val;

//

// Front Left Compression and Rebound Motor Values
// int FLCompMotorPin1Val;
// int FLCompMotorPin2Val;
// int FLRebMotorPin1Val;

// int FLRebMotorPin2Val;

/l

// Front Right Compression and Rebound Motor Values
// int FRCompMotorPinl;

// int FRCompMotorPin2;

// int FRRebMotorPin1;

// int FRRebMotorPin2;

//

// Rear Left Compression and Rebound Motor Values
// int RLCompMotorPini1;

// int RLCompMotorPin2;

// int RLRebMotorPin1;

// int RLRebMotorPin2;

//

// Rear Right Compression and Rebound Motor Values
// int RRCompMotorPin1;

// int RRCompMotorPin2;

// int RRRebMotorPin1;

// int RRRebMotorPin2;

// int AnalogHeight4;

//Active Aerodynamics
Servo wingl;

int wing;

int throttle;

int brake;

int steer;

int thottleThresh = 90;

//Roaming Variables

int HeadLightVal = 0;

int LowBeamVal = 0;

int EmergencylightVal = 0;
int BrakeLightVal = 0;

int RunninglightVal = 0;

//Roaming variables
int DoorVal = 0;

//Declare Variable Vals

int FLWindowUpVal = 0;
int FLWindowDnVal = 0;
int FRWindowUpVal = 0;
int FRWindowDnVal = 0;
int RLWindowUpVal = 0;
int RLWindowDnVal = 0;

int RRWindowUpVal = 0;
int RRWindowDnVal = 0;
int SunroofOpenVal = 0;

int SunroofClosedVal = 0;

void setup(){

//Define Window Control Module
pinMode(iFLWindowUp, INPUT);
pinMode(iFLWindowDn, INPUT);
pinMode(iFRWindowUp, INPUT);
pinMode(iFRWindowDn, INPUT);
pinMode(iRLWindowUp, INPUT);
pinMode(iRLWindowDn, INPUT);
pinMode(iRRWindowUp, INPUT);
pinMode(iRRWindowDn, INPUT);

//Define Interior Lighting Module
pinMode(InteriorLighting_10, OUTPUT);
pinMode(dsideDoor, INPUT);
pinMode(psideDoor, INPUT);
pinMode(rHatchDoor, INPUT);

// Define Sequential Shifter
pinMode(gearl, OUTPUT);
pinMode(gear2, OUTPUT);
pinMode(gear3, OUTPUT);
pinMode(gear4, OUTPUT);
pinMode(gear5, OUTPUT);
pinMode(gearR, OUTPUT);

//Initialize Gears

digitalWrite(gearl, LOW);
digitalWrite(gear2, LOW);
digitalWrite(gear3, LOW);
digitalWrite(gear4, LOW);
digitalWrite(gear5, LOW);
digitalWrite(gearR, LOW);

//Define Exterior Lighting Module
pinMode(LowBeams, INPUT);
pinMode(LowBeam_10, OUTPUT);
pinMode(HighBeams, INPUT);
pinMode(HighBeam_10, OUTPUT);

pinMode(RunningLight, INPUT);
pinMode(RunningLight_1O, OUTPUT);
pinMode(LeftBlinker, INPUT);
pinMode(LBlinker_lO, OUTPUT);
pinMode(RightBlinker, INPUT);
pinMode(RBlinker_lO, OUTPUT);
pinMode(EmergencyLights, INPUT);
pinMode(BrakelLights, INPUT);
pinMode(BrakeLights_1O, OUTPUT);

//Define Window Motor Control Outputs
pinMode(oFLWindowMotorPinl, OUTPUT);
pinMode(oFLWindowMotorPin2, OUTPUT);

//Front Right Window Outputs
pinMode(oFRWindowMotorPin1, OUTPUT);
pinMode(oFRWindowMotorPin2, OUTPUT);

//Rear Left Window Outputs
pinMode(oRLWindowMotorPinl, OUTPUT);
pinMode(oRLWindowMotorPin2, OUTPUT);

//Rear Right Window Outputs
pinMode(oRRWindowMotorPin1, OUTPUT);
pinMode(oRRWindowMotorPin2, OUTPUT);

//SunRoof Outputs
pinMode(oSunroofMotorPin1, OUTPUT);
pinMode(oSunroofMotorPin2, OUTPUT);

wingl.attach(9);
//Setup Communication
Serial.begin(9600);

void loop()

{
SequentialShiftControl();
// ActiveSuspensionModule();
EnvironmentalControlModule();
ExteriorLightingModule();
InteriorLightingModule();
WindowControlModule();
// IgnitionControlModule();

WiperControlModule();

// read the input on analog pin 0 (Throttle Position):
throttle = analogRead(A4);

// read the input on analog pin 1 (Brake pressure);
brake = analogRead(A5);

// read the input on analog pin 2 (Steering Possition);
steer = analogRead(A6);

// Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):
// Throttle

float throttlePos = ((4.4 - (throttle * (5.0 / 1023.0))) / (4.4 - 1.3)) * 100;

// Brake

float brakePres = (brake * (5.0 / 1023.0));

// Steering

float SteeringPos = (steer * (5.0 / 1023.0));

// controling rear wing

// change wing if throttle goes high and steering straight

if ((throttlePos > thottleThresh) && (2 < SteeringPos < 3)) {
wingl.write(0);

}

//air brake if steering straight and brakes go high

else if ((2 < SteeringPos < 3) && (brakePres > 4.9)) {
wingl.write(180);

}

//lift wing if turning

else if ((brakePres < 4.9) && (SteeringPos > 3)) {
wingl.write(80);

}

else {
wingl.write(40);

}

}

void ActiveSuspensionModule(){

void EnvironmentalControlModule(){

}
void ExteriorLightingModule() {

HeadLlightVal = digitalRead(HighBeams);
if (HeadLightVal == HIGH) {

digitalWrite(HighBeam_IO, LOW);

}

else

{
digitalWrite(HighBeam_10, HIGH);

}

LowBeamVal = digitalRead(LowBeams);

if (LowBeamVal == HIGH) {
digitalWrite(LowBeam_IO, LOW);

}

else

{
digitalWrite(LowBeam_10, HIGH);

}

EmergencylightVal = digitalRead(EmergencyLights);

if (EmergencylLightVal == LOW) {
digitalWrite(RBlinker_IO, LOW);
digitalWrite(LBlinker_|O, LOW);
delay(1000);
digitalWrite(RBlinker_lO, HIGH);
digitalWrite(LBlinker_ 1O, HIGH);
delay(1000);

}

else

{
digitalWrite(RBlinker_lO, HIGH);
digitalWrite(LBlinker_lO, HIGH);

}

RunningLightVal = digitalRead(RunningLight);

if (RunningLightVal == HIGH) {
digitalWrite(RunningLight_10, LOW);

}

else

{
digitalWrite(RunningLight_lO, HIGH);

}

}

void IgnitionControlModule(){

void InteriorLightingModule() {

DoorVal = digitalRead(dsideDoor);
if (DoorVal == HIGH) {
digitalWrite(InteriorLighting_lO, LOW);
}
else
{
digitalWrite(InteriorLighting_10, HIGH);
}
DoorVal = digitalRead(psideDoor);
if (DoorVal == HIGH) {
digitalWrite(InteriorLighting_lO, LOW);
}
else
{
digitalWrite(InteriorLighting 10, HIGH);
}
DoorVal = digitalRead(rHatchDoor);
if (DoorVal == HIGH) {
digitalWrite(InteriorLighting_lO, LOW);
}
else
{
digitalWrite(InteriorLighting_ 10, HIGH);
}
}

int SequentialShiftControl() {
left_tap = analogRead(leftPin);
right_tap = analogRead(rightPin);
reverse_tap = analogRead(reversePin);
neutral_tap = analogRead(neutralPin);

if (left_tap > 500) {
switch (gear) {
case -1:
//do nothing
break;

case 0:
//do nothing
break;

case 1:
//do nothing

break;

case 2:
//downshift to gear 1
digitalWrite(gear2, LOW);
delay(100);
digitalWrite(gearl, HIGH);
gear =1;
break;

case 3:
//downshift to gear 2
digitalWrite(gear3, LOW);
delay(100);
digitalWrite(gear2, HIGH);
gear = 2;
break;

case 4:
//downshift to gear 3
digitalWrite(gear4, LOW);
delay(100);
digitalWrite(gear3, HIGH);
gear = 3;
break;

case 5:
//downshift to gear 4
digitalWrite(gear5, LOW);
delay(100);
digitalWrite(gear4, HIGH);
gear = 4;
break;

if (right_tap > 500) {
switch (gear) {

case -1:
//upshift to gear 0
digitalWrite(gearR, LOW);
delay(100);
gear =0;
break;

case 0:
//upshift to gear 1
digitalWrite(gear1, HIGH);
gear =1;
break;

case 1:
//upshift to gear 2
digitalWrite(gearl, LOW);
delay(100);
digitalWrite(gear2, HIGH);
gear = 2;
break;

case 2:
//upshift to gear 3
digitalWrite(gear2, LOW);
delay(100);
digitalWrite(gear3, HIGH);
gear = 3;
break;

case 3:
//upshift to gear 4
digitalWrite(gear3, LOW);
delay(100);
digitalWrite(gear4, HIGH);
gear = 4;
break;

case 4.
//upshift to gear 5
digitalWrite(gear4, LOW);
delay(100);
digitalWrite(gear5, HIGH);
gear=1;
break;

case 5:
//do nothing
break;
}
}

if (reverse_tap > 500) {
switch (gear) {
case -1:
//do nothing
break;

case 0:
//shift into reverse
digitalWrite(gearR, HIGH);
gear=-1;
break;

case 1:
//do nothing
break;

case 2:
//do nothing
break;

case 3:
//do nothing
break;

case 4:
//do nothing
break;

case 5:
//do nothing
break;

}
}

if (neutral_tap > 500) {

digitalWrite(gearl, LOW);
digitalWrite(gear2, LOW);
digitalWrite(gear3, LOW);
digitalWrite(gear4, LOW);
digitalWrite(gear5, LOW);
digitalWrite(gearR, LOW);
gear=0;

int StartupCalibrationModule(){

void WindowControlModule() {

FLWindowUpVal == digitalRead(iFLWindowUp);

if (FLWindowUpVal == HIGH) {
digitalWrite(oFLWindowMotorPin1, LOW);
digitalWrite(oFLWindowMotorPin2, HIGH);

}

else

{
digitalWrite(oFLWindowMotorPin1, HIGH);
digitalWrite(oFLWindowMotorPin2, HIGH);

}

FLWindowDnVal == digitalRead(iFLWindowDn);

if (FLWindowDnVal == HIGH) {
digitalWrite(oFLWindowMotorPin1, HIGH);
digitalWrite(oFLWindowMotorPin2, LOW);

}

else

{
digitalWrite(oFLWindowMotorPin1, HIGH);
digitalWrite(oFLWindowMotorPin2, HIGH);

}

FRWindowUpVal = digitalRead(iFRWindowUp);

if (FRWindowUpVal == HIGH) {
digitalWrite(oFRWindowMotorPin1, LOW);
digitalWrite(oFRWindowMotorPin2, HIGH);

}

else

{
digitalWrite(oFRWindowMotorPin1, HIGH);
digitalWrite(oFRWindowMotorPin2, HIGH);

}

FRWindowDnVal = digitalRead(iFRWindowDn);

if (FRWindowDnVal == HIGH) {
digitalWrite(oFRWindowMotorPin1, LOW);
digitalWrite(oFRWindowMotorPin2, HIGH);

}

else

{
digitalWrite(oFRWindowMotorPin1, HIGH);
digitalWrite(oFRWindowMotorPin2, HIGH);

}

RLWindowUpVal == digitalRead(iRLWindowUp);

if (RLWindowUpVal == HIGH) {
digitalWrite(oRLWindowMotorPinl, LOW);
digitalWrite(oRLWindowMotorPin2, HIGH);

}

else

{
digitalWrite(oRLWindowMotorPin1, HIGH);
digitalWrite(oRLWindowMotorPin2, HIGH);

}

RLWindowDnVal == digitalRead(iRLWindowDn);

if (RLWindowDnVal == HIGH) {
digitalWrite(oRLWindowMotorPin1, HIGH);
digitalWrite(oRLWindowMotorPin2, LOW);

}

else

{
digitalWrite(oRLWindowMotorPin1, HIGH);
digitalWrite(oRLWindowMotorPin2, HIGH);

}

RRWindowUpVal == digitalRead(iRRWindowUp);

if (RRWindowUpVal == HIGH) {
digitalWrite(oORRWindowMotorPin1, LOW);
digitalWrite(oORRWindowMotorPin2, HIGH);

}

else

{
digitalWrite(oRRWindowMotorPin1, HIGH);
digitalWrite(oRRWindowMotorPin2, HIGH);

}

RRWindowDnVal == digitalRead(iRRWindowDn);

if (RRWindowDnVal == HIGH) {
digitalWrite(cRRWindowMotorPin1, HIGH);
digitalWrite(oORRWindowMotorPin2, LOW);

}

else

{
digitalWrite(oORRWindowMotorPin1, HIGH);
digitalWrite(oRRWindowMotorPin2, HIGH);

}

SunroofOpenVal, digitalRead(iSunroofOpen);

if (SunroofOpenVal == HIGH) {
digitalWrite(oSunroofMotorPinl, LOW);
digitalWrite(oSunroofMotorPin2, HIGH);

}

else

{
digitalWrite(oSunroofMotorPin1, HIGH);
digitalWrite(oSunroofMotorPin2, HIGH);

}

SunroofClosedVal == digitalRead(iSunroofClosed);

if (SunroofClosedVal == HIGH) {
digitalWrite(oSunroofMotorPin1, HIGH);
digitalWrite(oSunroofMotorPin2, LOW);

}

else

{
digitalWrite(oSunroofMotorPin1, HIGH);
digitalWrite(oSunroofMotorPin2, HIGH);

}

}

void WiperControlModule() {

WiperSwitchPos1Val == digitalRead(WiperSwitchPos1);

while (WiperSwitchPos1Val, HIGH) {
digitalWrite(WiperMotorPin1, HIGH);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 85);

}

WiperSwitchPos1Val == digitalRead(WiperSwitchPos1);

while (WiperSwitchPos1Val, LOW) {
digitalWrite(WiperMotorPinl, LOW);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 0);

}

WiperSwitchPos2Val == digitalRead(WiperSwitchPos2);

while (WiperSwitchPos2Val, HIGH) {
digitalWrite(WiperMotorPin1, HIGH);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 170);

}

WiperSwitchPos2Val == digitalRead(WiperSwitchPos2);

while (WiperSwitchPos2Val, LOW) {
digitalWrite(WiperMotorPinl, LOW);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 0);

}

WiperSwitchPos3Val == digitalRead(WiperSwitchPos3);

while (WiperSwitchPos3Val, HIGH) {
digitalWrite(WiperMotorPin1, HIGH);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 255);

}

WiperSwitchPos3Val == digitalRead(WiperSwitchPos3);

while (WiperSwitchPos3Val, LOW) {
digitalWrite(WiperMotorPinl, LOW);
digitalWrite(WiperMotorPin2, LOW);
digitalWrite(WiperMotorSpeedVal, 0);

}

