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1 Impact: Practical and Scientific

The recent surge in Artificial Intelligence (AI) has been largely driven by deep learning
[T, 2, B, 4], a movement resulting from the combination of large datasets, highly paral-
lelized compute, and rich neural network architectures with automatic differentiation.
Central to deep learning progress is Stochastic Gradient Descent (SGD) and related al-
gorithms for neural network training [5, [6], (7, [§], which apply some form of the first-order
gradient in an iterative manner to the network parameters. In particular, the Adam
optimiser [§] is currently one of the most cited papers of the decade, accumulating over
190 thousand citations.

To encourage the discovery of novel first-order gradient descent optimization algo-
rithms capable of effectively optimizing deep neural networks, we introduce the Neural
Network Gradient Descent challenge at TIG. This challenge aims to emulate the deep
learning setting by training multilayer perceptrons (MLPs), the simplest foundational
neural network architecture [9], on a nonlinear regression task, resulting in loss functions
with typical deep learning characteristics such as:

e Very large dimensionality with for example moderate MLP sizes easily reach-
ing O(10°) parameters.

e Many local minima and saddle points due to the excessive overparameteri-
zarion of neural networks from the classical perspective of statistics [10, [11].

e The phenomenon of overfitting where many training loss minima correspond
to networks with poor performance on unseen data points.

Notably, the challenge has been specifically designed to develop optimisers with an in-
ductive bias for training neural networks that generalize well beyond training data as
seen in SGD [12] [13]. This is nontrivial, as many advanced gradient descent optimisers
like Adam have been empirically observed to find minima that exhibit slightly worse
generalization than vanilla SGD [14] despite outperforming in terms of training conver-
gence [15]. No definite theoretical understanding has yet been found to explain these
observations, which form a unique facet of deep learning optimisation that distinguishes
it from traditional optimisation problems focused solely on finding the lowest loss.

On a practical level, the exploration for more efficient optimisers derived from MLP
training may contribute to:

e Democratizing AGI as improvements in neural network training can reduce the
barriers to entry due to hardware costs and specialized training infrastructure.

e Improving state-of-the-art models as MLP motifs pervade larger architec-
ture, e.g. transformer blocks [3], and thus findings from here may inspire mean-
ingful changes to training of larger neural network architectures.

e Reducing cost and energy usage as training neural networks requires many
iterations of applying gradient descent, with the latest state-of-the-art models
costing over hundreds of millions of dollars to train [I6], and thus small efficiency
gains in the optimisation loop will have big impact.

¢ Understanding SGD dynamics as MLPs have been toy models for under-
standing gradient descent [17, [I8, [19].
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Figure 1: Schematic of the TIG Neural Network Training challenge. (A)
Here we show the MLP architecture (top), an example 1D dataset generated with a
GP (bottom left), and a high-level visualization of the challenge training loop structure
(bottom right). (B) Example training of an MLP with 2 hidden layers, showing train
and validation loss curves (top) and the corresponding MLP functions at initialisation
(bottom left) and after early stopping (bottom right).

2 Problem Description and Formulation

To focus innovation on the optimiser component of the training algorithm, the Neural
Network Gradient Descent challenge has a different overall structure from current TIG
challenges in two key aspects:

1. The optimiser algorithm submission does not output a “solution”, in the sense
that it is embedded inside a “parent” algorithm called the training loop that uses
the optimiser iteratively to compute the solution.

2. The optimiser algorithm is ran many times for a single challenge instance, with in-
puts and outputs constrained to the structure of the training loop and determined
by intermediate states.

High-level structure A challenge instance is defined by three main components:

e A dataset D = {x;, 4}V that is randomly generated by adding white noise & ~
N(0,02,,,) to a random smooth function f : RP? — R drawn from a Gaussian
process (GP) with some chosen kernel function k(x,x’) [20]

Yi = f(xz> + éz with f() ~ gP(Ok(, ))7 (1)

evaluated at uniform random locations in the unit hypercube x; € [—1,1]”, and
the dataset D is furthermore split into train Dj,.;,, validation Dy, and test Diegt
sets of sizes Nirain, Nyal and Nieg:.

e A standard MLP architecture [9] fw : RP — R with randomly initialized param-
eters w where its hidden layers all share the same specified width and contain
ReLU-BatchNorm activation functions.



e A mean squared error (MSE) loss function between some set of targets {y;} and
MLP outputs { fw(x:)}

£wiD) = 5 3l = Fulox) P @)

which is used during train, validation and test evaluations.

Details of the random instance generation are given in Section [3] The train set is then
divided into B batches Diyain — {Dpatch v}7 of size Npaiean that are then fed into the
training loop, where each loop iteration (epoch) consists of:

1. Sampling batches in random order, where for every batch:

e Compute the parameter location w (which can be different to current w like
in Nesterov momentum [21]) at which we evaluate the training loss gradients

e Compute the regression loss £ and its gradients g = V. L(W; Dpaten) using
a forward-and-backward pass [5] through the MLP

e Run one optimiser step to transform g into parameter updates u

e Apply updates w — w 4+ u

Note that multiple gradient steps are applied on different subsets (batches) of
Dirain per epoch, hence the term “stochastic” gradient descent.

2. Evaluating the validation loss with a MLP forward pass £(w; Dya).

3. Repeating the above steps for multiple epochs until either the maximum number
of epochs has been reached or the validation loss has not improved for some chosen
number of ”patience” epochs, which is a standard early stopping criterion [22].

Furthermore, the final two layers of the MLP are frozen at initialisation to ensure
asymmetry of the challenge instance for solution verification (see Section. The overall
challenge structure is depicted in Figure (1] and the detailed structure of this standard
training loop is given in Algorithm The data generation, MLP construction and
training loop components are deterministic conditioned on a random seed associated
with the current challenge instance, which allows method verification reproducibility.

Goal Valid challenge instance attempts involve optimisers that output MLP param-
eters when run in Algorithm (1| for which the MLP has a test error £(w; Dyes;) lower
than a dataset-dependent baseline test error €, computed without the computationally
expensive MLP training loop

Ntest

1 A
N > i = ()l (3)

i=1

63 > £MSE(W7 Dtest) =

which formally specifies the solution criterion for w. We propose a simple empirical
expression for €, in Section [4] that maintains computational asymmetry of the solution
criterion when combined with freezing the final two MLP layer parameters. This repre-
sents MLPs that successfully approximate the random function f(-) using only a finite
set of noisy observations {y;} at {x;}.

Submission constraints This challenge requires innovators to design components
of a gradient descent iteration loop of the structure Algorithm [1| (with components like
Algorithm [2| and Algorithm 3| provided by innovators) that can successfully optimise
MLP parameters to perform regression on a dataset assessed by holdout test set per-
formance. In particular, the optimiser step also has access to current MLP parameters,
allowing for optimiser-inherent regularization techniques like weight decay [23]. In or-
der to isolate contributions from optimiser innovation as much as possible, all training
loop aspects outside of the optimiser algorithm (Algorithm [2|) are preserved across all
challenge instances. The backpropagation backbone for computing gradients in partic-
ular is identical across all challenge instances, as modifying this would result in moving
away from gradient descent as in Direct Feedback Alignment [24].
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Algorithm 1 Standard training loop pseudocode that runs innovator submissions.

Input: training data Dyain = {X;, ¥i iv“ai“, validation data Dy, = {x;, yl}]lv vl MLP

architecture and initial parameters wi,;; split into a trainable w' and a frozen w'* part,
batch size B, patience P, difficulty parameters n (Section

Output: MLP parameters with the best validation loss w,, number of training
epochs used T’

Split Dirain into B equally sized batches B
Set optimiser state S «— init optimiser state(n), W < Wi, g < 0
Set previous average train and validation loss l}rain + NaN, ival <~ NaN
Set lowest validation loss observed lowest — 00, current epoch number ¢t < 0
while max fuel limit not reached do

ltrain 0

for Dyaten in shuffle order(B) do

w' < query location parameters(w",S,g,1, Livain, lval (Algorithm

> tr

l,g < forward_and_backpropagation (CMSE([W , witl; Dbatch))
u,S < optimiser step updates(S,g, w",t, Lirain, l~va1) (Algorithm
w' < w' + u (gradient descent step)
ltrain — ltrain + l/|B|
end for
lval <= Lyise(W; Dyar)
if [ 0 < lLowest then
W, < W
lowest < lval
end if
if validation loss has not improved for P times in a row then
Terminate loop at current epoch T «— ¢ + 1 (early stopping)
end if
Lirain < lirainy lval < lyal
end while
return w,, T

Algorithm 2 Example pseudocode outline of vanilla stochastic gradient descent step
with exponential learning rate decay as specified by innovator submissions.
Input: optimiser state S, parameter gradients g, trainable parameters w, epoch
number ¢, previous epoch training loss li.in, previous epoch validation loss [ya
Output: neural network parameter updates u, new optimiser state S

Get learning rate base and decay factor vy, 74 < S
Set learning rate v < 7o - et/
for each parameter gradient g; in g do
Ui <= =7 Gi
end for
return u, S (state unchanged in this example)

Algorithm 3 Example pseudocode outline of “lookahead” gradients

Input: trainable parameters w, current state S, current gradient g, epoch number
t, previous epoch training loss li;ain, previous epoch validation loss [y,

Output: location to compute gradient w

W=w-+g
return w




Optimiser hyperparameters Note that innovators must specify not only the opti-
mize algorithm, but also hyperparameters such as the learning rate. These hyperpa-
rameters should generally depend on challenge difficulty parameters n (Section , since
gradient descent optimizers are known to be sensitive to hyperparameter choices [25].
Extended innovator rewards can be rewarded to improvements solely in hyperparameter
selection for existing optimiser algorithm proposals.

3 Random Instance Generation

Dataset generation To model random functions, we choose GPs to model a distri-
bution over functions, which provide a flexible infinite nonparametric family of functions
while allowing fine control over analytical properties of the sample functions by choos-
ing the kernel function k(z,z’) [26]. For generating twice differentiable f(-), we use
Matérn-5/2 kernels [20]. We draw functions from a Gaussian process centered around
zero functions f(x) =0

where we use a Kronecker product kernel to define functions over multiple input di-
mensions. For our challenge implementation, we pick a kernel lengthscale 0.3 across all
D = 2 dimensions. To prevent the benchmarker from anticipating what the test set is
before running a complete training loop, we only use a subset of Dy, where this subset
is randomly selected based on a seed that depends on the number of training epochs
T, which is not directly controlled by the optimiser algorithm due to early stopping.

Neural network generation Following standard literature, each network layer con-
sists of a linear mapping, followed by nonlinear activation, and finally a batch normal-
isation layer [27]. The activation functions in hidden layers default to the commonly
used rectified linear unit (ReLU) [28], which is robust to vanishing and exploding gra-
dients [29, 30], BI] and have been empirically shown to outperform smooth activation
functions such as the sigmoid [32] due to its tendency to create sparsity within the
network as a regularising effect. We use standard Glorot initialisation of the MLP pa-
rameters [33] to obtain randomly initialised MLPs on which we apply the training loop.
Different challenge instances have MLPs that vary in the number of hidden layers, or
depth, while the layer widths are fixed at 256 for our challenge implementation.

4 Asymmetry Characteristics

Baseline test errors The purpose of the baseline test error in Equation is to
compute, without the expensive gradient descent training loop, some threshold to ac-
cept only qualified MLP parameters during solution verification that cannot have been
generated by cheap strategies unrelated to practical algorithm innovation, like random
guesses or fast heuristics. One has to take an empirical approach as the theoretical
best possible performance will not only depend on the optimiser, but also on the MLP
architecture and the amount of training data available. A simple approach to such a
reference error is to use the empirical ground truth test mean squared error (which is a
noisy estimate of o3,,,) multiplied by some slack factor v > 1

Ntest

== Iy~ fill" (5)

test i=1

Finding a function fit with good test error to the regression problem underlying this
challenge is not inherently asymmetric (e.g. one can use kernel or Gaussian process
regression [20]). However, the extremely high-dimensional search space for parameters
w combined with the complex loss landscapes of neural networks makes it impractical
to guess solutions or to use efficient solvers and convex optimization techniques. We
rely on this asymmetry of deep learning, and using numerical results in Section [5| we
make an informed decision on the value(s) of « to pick for all challenge instances.
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Figure 2: Numerical exploration of MLP training results across challenge
parameters. Test mean squared error (top) and training epochs used before early
stopping (bottom) across MLPs with varying numbers of hidden layers L, across three
values for training loop dataset sizes N. Experiments are performed with vanilla SGD,
moment variants of SGD and Adam. We also show in gray the empirical test set errors
in the top panels. Error bars are s.e.m. computed over 3 random seed instances.

MLP solution constraints To avoid methods that can potentially sidestep this
asymmetry for solution verification, like using previously trained neural networks to
fine-tune them by training only final layers or performing linear regression on the fi-
nal layer [I], 34], we freeze the final 2 layers at initialisation as shown in Figure .
This is because the required hidden layer input to the final two layers (which forms a
smaller MLP subnetwork) is a highly complex problem in itself with a similar computa-
tional asymmetry to training MLPs, and thus forces any valid solution to require some
procedure that matches the computational work of properly training MLPs.

5 Difficulty Parameters

We consider the following challenge difficulty parameters 1 that influence the Pareto
frontier of qualifying solutions:

e Number of MLP hidden layers L which sets the depth of the network, ex-
cluding the input and output layers.

e Number of training loop data points N which governs the amount of training
and validation data available to the optimiser loop.

Note we keep the test set size Nies fixed, as well as the ratio of train/validation split.
For the solution criterion Equation , we take the slack factor « to be independent of
the difficulty parameters n = {L, N} with the following arguments:

e The space of accepted w does not depend on training data (only test data where
the number of points is fixed).

e Increasing L (or generally network size) above a certain level does not mean-
ingfully increase the challenge asymmetry as the dimensionality of w is already
extremely high.

e Increasing N provides more potential signal to be extracted into the MLP pa-
rameters by the optimiser, but retains the asymmetry of finding valid w as the
mapping from w to even a known target MLP function output remains highly
nontrivial.



A suitably chosen fixed threshold does not critically alter the asymmetry of our solution
criterion, while allowing a practical range of MLP solutions across all relevant difficulty
parameters.

Numerical experiments In Figure [2 we show numerical experiments of training
MLP challenge instances for various difficulty parameter settings. We explore L €
{1,2,...,11} and N = {1024,2048,4096} data points with a 80/20 train/validation
split and a uniform hidden layer width of 256. For the optimiser algorithms, we apply
vanilla SGD, its momentum variants and Adam optimisers with default hyperparameter
values commonly used in the literature. We can observe the following:

e In top panels, we observe that deeper MLPs are harder to train and require more
advanced versions of SGD to reach better test errors, with an optimal depth
L, = 3 for the dataset type used.

e In bottom panels, we visualize the number of epochs used before early stopping
and observe more efficient training trajectories for the advanced versions of SGD.

e Consistent with the literature, Adam does not lead to the best generalisation
performance, with SGD momentum variants outperforming in test error.

e Adam outperforms all SGD variants for L = 1, where the hidden layer is frozen
(it is part of the final two layers including the output layer) and we thus observe
training an effectively linear model (input layer) with a complicated non-quadratic
effective loss function due to the final frozen MLP subnetwork.

Across all difficulty parameters explored, we observe a slack factor of a = 4 to provide
a good margin for qualifying MLP solutions for L > 2, ignoring L = 1 since it is
an effective linear model edge case. Note that due to the nonconvex nature of neural
network training, numerical instabilities or non-convergence may generally occur during
the training iterations for arbitrarily designed optimisers.

6 Future Outlook

There are many avenues to pursue for extending this challenge to have more potential
real-world impact, for example:

e Include different types of neural network architectures like transformers [3] and
recurrent neural networks [30]

e Consider the variation of training loop hyperparameters like batch size and early
stopping patience, which is known to affect training results significantly [21]

e Allow a more general optimisation loop to be modified by the innovators beyond
the gradient descent step alone

e Consider subtasks which focus on optimizing particular classes of neural net-
works/types of datasets, e.g. LLMs and text or RNNs and time series

We anticipate to gain valuable feedback on the challenge design from both the commu-
nity as well as live challenge runs on testnet, and are open to modifying design details
necessary for aligning this challenge with the target goals set out in Section
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